Year 9: ASK Yourself!

Subject: Physics
Unit: 3 - Particle Model

	Launching $1-2$	Developing $3-4$	Progressing $5-6$	Mastering $7-9$
kills				
	To be able to use particle diagrams to communicate ideas about relative densities of different states. To be able to use density = mass/volume to calculate density.	To be able to use the particle model to explain the effect on temperature of increasing the pressure of a gas at constant volume.	To be able to use the particle model to explain the effect on temperature of increasing the pressure of a gas at constant volume. To be able to use the particle model to explain why the latent heat of vaporisation is much larger than the latent heat of fusion. To be able to use the specific heat capacity equation to calculate mass, specific heat capacity or temperature change.	To be able to use the specific heat capacity equation to calculate mass, specific heat capacity or temperature. To be able to use the specific heat capacity equation to calculate mass, specific heat capacity or temperature change. To be able to use the equation $p V=$ constant to calculate the pressure or volume of a gas at constant temperature. Use the equation $E=$ $m L$
nowledge				
	To be able to describe changes of state as physical changes. To be able to describe how heating raises the temperature of a system. To be able to state that when an object changes	To be able to describe how mass is conserved when substances change state. To be able to explain that changes of state are physical, not chemical, changes because the material recovers	To be able to explain that changes of state conserve mass. To be able to describe that the temperature of a gas is related to the average kinetic energy of the molecules.	To be able to explain that internal energy is the total kinetic energy and potential energy of all the particles that make up a system.

| | state there is no
 change in
 temperature. To
 be able to recall
 that gases can be
 compressed or
 expanded by
 pressure changes.
 To be able to state
 that in the particle
 model the higher
 the temperature
 the faster the
 molecules move. | its origal
 properties if the
 change is
 reversed.
 To be able to
 describe that
 heating raises the
 temperature or
 changes the state
 of a system but
 not at the same
 time. | the particle model
 to explain that
 increasing the
 volume of a gas, at
 constant
 temperature, can
 lead to a decrease
 in pressure. |
| :--- | :--- | :--- | :--- | :--- |\quad| (|
| :--- |

