Year 10: ASK Yourself!

Subject: Physics Unit: 7 – Electromagnetism

	Launching 1-2	Developing 3-4	Progressing 5-6	Mastering 7-9		
KIIIS						
	To be able to plot the magnetic field around a bar magnet. To be able to draw the magnetic field around a conducting wire and a solenoid.	To be able to describe the motor effect that applies to a current-carrying conductor in a magnetic field. To be able to recognise how size of the induced p.d. can be increased by increasing the speed of movement or by increasing the strength of the magnetic field.	To be able to describe the motor effect that applies to a current-carrying conductor in a magnetic field. To be able to draw graphs of potential difference generated in the coil against time. To be able to manipulate equations.	To be able to explain Fleming's left-hand rule. To be able to use the equation F = BIL to calculate the force on a conductor. To be able to describe how to draw and interpret graphs of potential difference generated in the coil against time. To be able to use and apply the expression		
				vp/vs=np/ns.		
K nowledge						
	To be able to recall that like poles repel, unlike poles attract. To be able to state how the strength of an electromagnet can be increased. To be able to state that a force acts on a current- carrying conductor in a magnetic field. To be able to state what the	To be able to state what the generator effect is and that a dynamo generates DC and an alternator generates AC. To be able to recognise that the poles of a magnet are the places where the magnetic forces are strongest To be able to describe that	To be able to recognise a magnetic field. To be able to explain what the size of a force on a conductor depends on. To be able to describe how when the p.d. is increased the current decreases for the same power transmitted. To be able to explain how	To be able to explain that an induced magnet is only magnetic when it is in a magnetic field. To be able to explain that if the direction of motion of the conductor or the polarity of the magnetic field is reversed, the direction of the induced potential difference and		

generator effect	when a coil is	electromagnets	any induced
is.	rotated in a	are used.	current is
To be able to state	magnetic field an	To be able to	reversed.
that a dynamo	alternating current	explain the	To be able to
generates d.c. and	is induced in the	behaviour of a	explain generator
an alternator	coil.	magnetic	effect & use in a
generates a.c.	To be able to	compass.	dynamo to
To be able to state	explain how the	To be able to	generate d.c. with
what a basic	potential	explain how	the use of
transformer is and	differences across	electromagnets	commutator; and
the difference	the two coils	are used in	is used in an
between step-up	depend on the	devices.	alternator to
and step-down.	number of turns on		generate a.c.
To be able to state	each coil and how		To be able to
that high p.d. are	the potential		explain how power
used to reduce	difference is		transmission
power transmission	induced.		losses are related
losses.			to the square of
			the current.